O EP-Program - Strisulksa School - Roi-et Math: Further Differentiation

- Dr.Wattana Toutip - Department of Mathematics - Khon Kaen University
© 2010 :Wattana Toutip o wattou@kku.ac.th o http://home.kku.ac.th/wattou

14 Further Differentiation

14.1 The product and quotient rules

These rules enable products and quotients of functions to be differentiated.
The Product Rule. If $y=u v$, then $\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
The Quotient Rule. If $y=\frac{u}{v}$, then $\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$

14.1.1 Examples

1. Differentiate $y=\left(x^{2}+3 x-2\right)\left(4-x^{2}\right)$

Solution
Here $u=x^{2}+3 x-2$ and $v=4-x^{2}$. Apply the Product Rule:

$$
\begin{aligned}
& \frac{d y}{d x}=\left(x^{2}+3 x-2\right)(-2 x)+\left(4-x^{2}\right)(2 x+3) \\
& \frac{d y}{d x}=-4 x^{3}-9 x^{2}+12 x+12
\end{aligned}
$$

2. Differentiate $y=\frac{x}{2 x^{2}-3 x+5}$

Solution
Here $u=x$ and $v=2 x^{2}-3 x+5$. Apply the Quotient Rule:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\left(2 x^{2}-3 x+5\right) \times 1-x \times(4 x-3)}{\left(2 x^{2}-3 x+5\right)^{2}} \\
& \frac{d y}{d x}=\frac{-2 x^{2}+5}{\left(2 x^{2}-3 x+5\right)^{2}}
\end{aligned}
$$

14.1.2 Exercises

1. Without multiplying out the brackets, differentiate the following:
(a) $y=x\left(x^{2}+7 x-3\right)$
(b) $y=(x+3)\left(2 x^{3}+6 x\right)$
(c) $y=x^{2}\left(3 x^{5}-3 x^{2}+x\right)$
(d) $y=\left(x^{2}-1\right)\left(x^{2}+1\right)$
2. Differentiate the following:
(a) $y=\frac{x}{x+3}$
(b) $y=\frac{x^{2}+7 x-2}{x^{2}+3}$
(c) $y=\frac{3 x^{2}}{x-17}$
(d) $y=\frac{1}{x+3}$
3. Find the equation of the tangent to the curve $y=\frac{x^{2}}{x-1}$ at the point $(2,4)$. Find the equation of the normal at $(3,4.5)$.
4. Find the maxima and minima of the following functions
(a) $y=\frac{x^{2}}{x-1}$
(b) $y=\frac{x^{2}+1}{x+1}$
(c) $y=\frac{1}{x^{2}+1}$
(d) $y=\frac{1}{x^{2}+4 x+9}$

14.2 The chain rule

The Chain Rule enables functions of functions to be differentiated. If y is a function of z, and z is a function of x, then the derivative of y is found by the following :

$$
\frac{d y}{d x}=\frac{d y}{d z} \times \frac{d z}{d x}
$$

14.2.1 Examples

1. Differentiate $y=\left(x^{2}+1\right)^{1 / 2}$.

Solution

Substitute for the inside function. Let $z=x^{2}+1$. Then $y=z^{\frac{1}{2}}$.
Use the chain rule above.

$$
\frac{d y}{d x}=\frac{d y}{d z} \times \frac{d z}{d x}
$$

$$
\begin{aligned}
& =\frac{1}{2} z^{-\frac{1}{2}} \times 2 x \\
\frac{d y}{d x} & =x\left(x^{2}+1\right)^{-\frac{1}{2}}
\end{aligned}
$$

2. Differentiate $x\left(x^{2}+1\right)^{1 / 2}$

Solution
This is a product $. u=x$ and $v=\left(x^{2}+1\right)^{1 / 2}$. Use the product rule of 14.1 , with the derivative of v which was found in Example 1.
which was found in Example 1.

$$
\begin{aligned}
\frac{d y}{d x} & =u \frac{d v}{d x}+v \frac{d u}{d x} \\
& =x \times x\left(x^{2}+1\right)^{-1 / 2}+\left(x^{2}+1\right)^{1 / 2} \times 1 \\
\frac{d y}{d x} & =x^{2}\left(x^{2}+1\right)^{-1 / 2}+\left(x^{2}+1\right)^{1 / 2}
\end{aligned}
$$

14.2.2 Exercises

1. Differentiate the following:
(a) $y=(3 x+7)^{1 / 2}$
(b) $y=\left(2-x^{2}\right)^{5}$
(c) $y=\sqrt{\left(1+2 x^{2}\right)}$
(d) $y=\frac{1}{\sqrt{(1+x)}}$
(e) $y=\sqrt{\left(1+x+x^{2}\right)}$
(f) $y=\left(1+x^{2}\right)^{100}$
2. Differentiate the following :
(a) $y=x(1+2 x)^{1 / 2}$
(b) $y=(x+3)(x-17)^{21}$
(c) $y=\frac{x+4}{\sqrt{\left(x^{2}+1\right)}}$
(d) $y=\frac{\sqrt{x}}{\sqrt{(x+1)}}$
3. Let $y=\sqrt{\left(x^{2}+3\right)}$. Find the equations of the tangent and normal to the curve at the point $(1,2)$.

14.3 Differentiation of trig and log functions

Provide that the angles are measured in radians, the trigonometric functions as differentiated as followings:

If $y=\sin x, \frac{d y}{d x}=\cos x$
If $y=\cos x, \frac{d y}{d x}=-\sin x$
If $y=\tan x, \frac{d y}{d x}=\sec ^{2} x$
e is a number approximately equal to 2.718281828 . The exponential function is defined as e^{x}.
$\ln x$ is defined as $\log _{e} x$.
e^{x} and $\ln x$ can be differentiated as follows:
If $y=e^{x}, \frac{d y}{d x}=e^{x}$
If $y=\ln x, \frac{d y}{d x}=\frac{1}{x}$.

14.3.1 Examples

1. Differentiate $y=e^{x} \cos x$

Solution
This is a product, so the product rule must be used.

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x} \cos x+e^{x}(-\sin x) \\
& \frac{d y}{d x}=e^{x}(\cos x-\sin x)
\end{aligned}
$$

2. Differentiate $y=\ln \left(1+x^{2}\right)$

Solution
This is a function of a function, so the chain rule is used.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{1+x^{2}} \times 2 x \\
& \frac{d y}{d x}=\frac{2 x}{1+x^{2}}
\end{aligned}
$$

14.3.2 Exercises

1. Differentiate the following:
(a) $\sin 3 x$
(b) $\cos 4 x$
(c) $e^{2 x-1}$
(d) $\tan (5 x-3)$
(e) $5 \cos 3 x-2 \sin 4 x$
(f) $e^{\cos x}$
(g) $\ln (2 x-3)$
(h) $\ln (\cos x)$
(i) $x \cos x$
(j) $x^{2} \sin x$
(k) $e^{x} \tan x$
(l) $x \ln x$
(m) $e^{x} \ln x$
(n) $e^{-x} \sin 2 x$
(o) $(\cos 3 x)(\sin 2 x)$
(p) $\cos \left(1+x^{2}\right)$
(q) $x \sin \left(1+3 x^{2}\right)$
(r) $\cos ^{2} x$
(s) $\sin ^{3} 3 x$
(t) $\frac{x}{\cos x}$
(u) $\frac{x^{2}}{\cos x+\sin x}$
(v) $\frac{\cos ^{2} x}{\ln x}$
(w) $\cos \sqrt{\left(x^{2}+3\right)}$
(x) $e^{x}(\cos x-\sin x)$
(y) $\ln 3 x-\ln x$
(z) $e^{\ln x}$
2. By considering $\tan x=\frac{\sin x}{\cos x}$, use the quotient rule to prove that $\frac{d}{d x}(\tan x)=\sec ^{2} x$
3. Find the derivatives of $\cot x, \sec x, \operatorname{cosec} x$.
4. Use the fact that $10^{x}=e^{x \ln 10}$
5. Use the fact that $\log _{10} x=\frac{\ln x}{\ln 10}$ to differentiate $\log _{10} x$.
6. Let a be positive constant. Differentiate a^{x} and $\log _{a} x$
7. Find the maxima and minima of the following:
(a) $x^{2} e^{x}$
(b) $\ln \left(1+x+x^{2}\right)$

14.4 Applications of the chain rule

An explicit function gives y directly in terms of x. An implicit function connects y and x together by an equation.
$y=3 x^{2}+7 x-3$ and $y=\cos 3 x-7 e^{x}$ are explicit.
$x^{2}+y^{2}=3$ and $\cos x y+7 y^{2}=8 x$ are implicit.
If x and y are both expressed, not in terms of each other, but in terms of a third variable t, then t is a parameter.
A small change in x is often written as δx. (Pronounced delta x). Small changes are connected by the following approximation:

$$
\delta y \approx \frac{d y}{d x} \times \delta x
$$

14.4.1 Examples

1. Find the gradient of the curve $y^{2}+3 x y+2 x^{2}=6$ at the point $(1,1)$.

Solution
Here y is an implicit function of x. The y^{2} term and the $3 x y$ term are
differentiate as follows:
$\frac{d\left(y^{2}\right)}{d x}=\frac{d\left(y^{2}\right)}{d y} \times \frac{d y}{d x}=2 y \frac{d y}{d x}$ (Using the Chain Rule)
$\frac{d(3 x y)}{d x}=y \frac{d 3 x}{d x}+3 x \frac{d y}{d x}=3 y+3 x \frac{d y}{d x}$ (Using the Product Rule)
Go through the equation, differentiating each term.
Substitute the values $x=1$ and $y=1$.

$$
\begin{aligned}
2 \frac{d y}{d x}+3+3 \frac{d y}{d x}+4 & =0 \\
\frac{d y}{d x} & =-\frac{7}{5}
\end{aligned}
$$

2. Variables x and y are given by $x=t^{2}+1, y=t^{3}+2$. Find $\frac{d y}{d x}$ in terms of t.

Solution
Use the chain rule :

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{d y}{d x} \div \frac{d x}{d t}=3 t^{2} \div 2 t \\
& \frac{d y}{d x}=\frac{3}{2} t
\end{aligned}
$$

3. The radius of a sphere is 12 cm . What is the approximate change in surface area if the radius increases by $0.01 \mathrm{~cm}^{2}$?
Solution

The area is given by $A=4 \pi r^{2}$. Use the small change formula above, with $\delta r=0.01$.
$\delta A \approx \frac{d A}{d r} \times \delta r=8 \pi r \times 0.01=8 \pi \times 12 \times 0.01$
The change is approximately $3 \mathrm{~cm}^{2}$
4. Air is pumped into a spherical balloon at $10 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. How fast is the radius increasing when it is 8 cm ?

Solution

The rate of change of the volume is $\frac{d V}{d t}=10$.
The rate of change of the radius is $\frac{d r}{d t}$.
The volume is given by $V=\frac{4 \pi r^{3}}{3}$.
Use the chain rule: $\frac{d V}{d t}=\frac{d V}{d r} \times \frac{d r}{d t}=4 \pi r^{2} \times \frac{d r}{d t}$ $\frac{d r}{d t}=\frac{10}{4 \pi 8^{2}}$
The radius is increasing at 0.012 cm per second

14.4.2 Exercises

1. Find the gradients of the following functions at the points shown.
(a) $x^{2}+y^{2}=5$ at $(1,2)$
(b) $x^{2}-y^{3}=1$ at $(3,2)$
(c) $y^{2}-3 x+2 y+x^{2}=1$ at $(2,1)$
(d) $x \cos y=1$ at $(1,0)$
(e) $y^{2}-2 x y=-3$ at $(2,3)$
(f) $y x^{2}+x^{3}+2 y=2$ at $(2,-1)$
(g) $y e^{x}+e^{y}+e^{x}=2$ at $(0,0)$
(h) $y^{2} x^{2}+2 x-3 y=0$ at $(1,2)$
2. For each of the following function, express $\frac{d y}{d x}$ in terms of x and y.
(a) $x^{2}+y^{2}=4$
(b) $x^{2}+y^{3}-3 x+y=5$
(c) $x^{2}+4 x y-y^{2}=3$
(d) $x^{2}+3 y x^{3}+4 y=7$
3. Show that the stationary points of the ellipse $2 x^{2}+x y+y^{2}=1$ occur when $y+4 x=0$.
4. Find the equation of the tangent to $5 x^{2}-4 y^{2}=1$ at the point $(1,1)$.
5. Find the maximum and minimum values of x for the curve $x^{2}-x y+y^{2}=1$.
6. Find the maximum and minimum values of x for the curve in Question 5. (Hint : when x is a maximum and minimum, $\frac{d x}{d y}=0$)
7. Find $\frac{d y}{d x}$ in terms of the parameter t for the following functions:
(a) $x=t^{2}, y=2 t^{3}+1$
(b) $x=\frac{1}{1+t}, y=t^{2}$
(c) $x=t+2 t^{2}, y=t^{2}-t^{3}$
(d) $x=\frac{1}{1+t}, y=\frac{1}{1+t^{2}}$
(e) $x=a t^{2}, y=2 a t(a$ is constant)
(f) $x=c t, y=\frac{c}{t}(c$ is constant $)$
(g) $x=\cos t, y=\sin t$
(h) $x=3 \cos t, y=2 \sin t$
(i) $x=e^{t}+e^{-t}, y=e^{t}-e^{-t}$
(j) $x=2 \tan t, y=\frac{3}{\cos t}$
8. If x and y are given parametrically by $x=3 \cos t$ and, find the equation of the tangent at the point where find the equation of the tangent at the point where $t=\frac{1}{4} \pi$.
9. Find the equation of the normal to the curve given by $x=t^{2}+1, y=t^{3}-1$, at the point where $t=2$.
10. Find the approximate increase in the area of a square when its side changes by 0.02 cm , when the side is 10 cm .
11. A cube has side 3 cm . Find the approximate change in radius if the volume changes by 0.02 cm , when the side is 10 cm .
12. The radius of a sphere is 5 cm . Find the approximate change in radius if the volume changes by $0.1 \mathrm{~cm}^{3}$.
13. The radius if a sphere is measured as 12.3 cm , with a possible error of 0.05 cm . What is the possible error in the volume?
14. The surface area of a sphere is measured as $67 \mathrm{~cm}^{2}$, with a possible error of approximate error in the volume?
15. The side of a square is measured, with a possible error of 1%. What was the approximate percentage error in the area?
16. The percentage error when measuring the are of a circle was 4%. What was the approximate percentage error in its radius?
17. The side of a sphere is increasing at $0.5 \mathrm{cms}^{-1}$. At what rate is the area increasing at a time when the side is 15 cm ?
18. The radius of a sphere is increasing at $0.02 \mathrm{cms}^{-1}$. At what rate is the surface area increasing when the radius is $20 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. At what rate is the volume increasing?
19. The area of a circle is increasing at $20 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. At what rate is the radius increasing, when it is 45 cm ?
20. Water is poured into a cone, of semi-vertical angle 45°, at $10 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. When the height of the water is 15 cm , at what rate is it increasing ?
21. The volume of a cube is decreasing at $3 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. When the side is 4 cm , what is the rate of decrease of (a) the side (b) the surface area?
22. At the equinox on the equator the angle θ of elevation of the sun changes at $0.000073 \mathrm{radians} / \mathrm{sec}$. A flagpole of height 40 m . throws a shadow of length $40 / \tan \theta$. Find the rate of decrease of the shadow when $\theta=0.1$.

14.5 Examination questions

1. (a) Differentiate with respect to x,
(i) $\ln (3 x+1)$
(ii) $x \cos 2 x$
(b) Find the equation of the tangent to the curve

$$
y=\frac{3+x}{1-2 x}
$$

at the point where the curve crosses the line $y=-1$.
(c) Given that $x^{2} y+y^{2}=10$, find $\frac{d y}{d x}$ in terms of x and y.
2. (a) sketch the curve $y=\log _{e}(x+3)$.
(b) Find the gradient of this curve at point where $x=e-3$. Hence show that the equation of the tangent to the curve at this point is $e y=x+3$.
3. The surface area of an expanding spherical balloon is increasing at the rate of 16 cm^{2} / s. At the instant when the surface area is $144 \mathrm{~cm}^{2}$, calculate
(a) The rate, in cm / s to 2 significant figures, at which the radius of the balloon is increasing,
(b) The rate, in cm^{3} / s to significant figures, at which the volume of balloon is increasing.
Find, in cm^{3} to 2 significant figures, the approximate increase in the volume of the balloon when the surface area increase from $144 \mathrm{~cm}^{3}$ to $146 \mathrm{~cm}^{2}$.
4. Express $\frac{3 x+16}{(x-3)(3 x+2)}$ in partial fractions.

Hence find the value of $\frac{d}{d x}\left[\frac{13 x+6}{(x-3)(3 x+2)}\right]$ when $x=2$.
5. (a) A curve has the equation $x^{2}-x y+y^{3}=k$, where k is a constant.

Find $\frac{d y}{d x}$ in terms of x and y.
Prove that the curve cannot posses a tangent which is parallel to the y-axis if $k<-\left(\frac{\pi}{2}-\theta\right) \frac{1}{27}$.
(b)If $y=\frac{e^{x}}{1+x^{2}}$, prove that the $\frac{d y}{d x}$ may be written in the form $\frac{(x-1)^{2} e^{x}}{\left(1+x^{2}\right)^{2}}$
Hence, or otherwise, prove that , for all positive values of x, $\frac{e^{x}}{1+x^{2}}>1$
6. (a) the parametric equations of a curve are : $x=a\left(1+\frac{1}{t}\right), y=a\left(t-\frac{1}{t^{2}}\right)$, where a is a constant and $t \neq 0$.
Find the equation of the normal to the curve at the point where $t=2$.
(b)the equation of a curve is $(y-x)^{2}=2 a(y+x)$, where a is a constant .

Find an expression for $\frac{d y}{d x}$ in terms of x, y and a.
(c)the velocity v of a point moving in a straight line is given in terms of the time t by $v=e^{-2 t} \sin 3 t$.
Find the smallest positive value of t for which the acceleration of the point is zero, giving two significant figure in your answer.
7. Apply the small increment formula $f(x+\delta x)-f(x) \approx \delta x f^{\prime}(x)$ to $\tan x$ to find are approximate value of
$\tan \left(\frac{100 \pi+4}{400}\right)-\tan \frac{\pi}{4}$
8. Sketch the curve whose equation is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a, b>0)$

Find the gradient of the curve at the point $P(a \cos \theta, b \sin \theta)$.
Hence show that the equation of the tangent at P is $b x \cos \theta+a y \sin \theta=a b$ and that the equation of the normal at P is $a x \sin \theta-b y \cos \theta=\left(a^{2}+b^{2}\right) \sin \theta \cos \theta$.
The tangent at P meets the x-axis at T and the y-axis at U; the normal at P meets the x-axis at M and the y-axis at N. Show that $N T$ is perpendicular to $M U$.
Write down the coordinates of the mid-point Q of $U T$ and hence find the equation of the locus of Q as θ varies.

Common errors

1. Products and quotients

The derivative of a product is not the product of the derivatives. Similarly the derivative of a quotient is not the quotients of the derivatives. In both case the rules must be used.

$$
\begin{aligned}
& \text { If } y=u v \text {, then } \frac{d y}{d x} \doteq \frac{d u}{d x} \times \frac{d v}{d x} \\
& \text { If } y=\frac{u}{v} \text {, then }=\frac{d y}{d x} \neq \frac{d u}{d x} \div \frac{d v}{d x}
\end{aligned}
$$

2. Chain rule

When using the chain rule

$$
\frac{d y}{d x}=\frac{d y}{d z} \times \frac{d z}{d x}
$$

Make sure you put the value of z in the $\frac{d y}{d x}$ term. Watch out for the following :
For $y=\sin x^{2}, \frac{d y}{d x} \neq 2 x \cos x$. It should be $2 x \cos x^{2}$.
Once you have found the derivative, substitute back so that the answer is in terms of x. It would be incorrect to leave z in the answer.
3. Differentiating power functions

The function a^{x} is very different from x^{a}. Do not differentiate as though they were the same function. In particular:
If $y=e^{x}$, then $\frac{d y}{d x} \neq x e^{x-1}$. It should be e^{x}.

4. Implicit functions

Many difficulties are found when differentiating implicit functions.
For something like y^{2}, use $\frac{d\left(y^{2}\right)}{d x}=\frac{d\left(y^{2}\right)}{d x} \times \frac{d y}{d x}$.
For something like .
For something like $3 x y$, use the product rule. And if there is a constant at the right hand side, its derivative is 0 . Note the following :
If $x^{2}+y^{2}=3$, then $2 x+2 y \times \frac{d y}{d x} \neq \frac{d y}{d x}$.
The right hand side of the last equation should be 0 .

Solution (to exercise)

14.1.2

1. (a) $\left(x^{2}+7 x-3\right)+x(2 x+7)$
(b) $\left(2 x^{3}+6 x\right)+(x+3)\left(6 x^{2}+6\right)$
(c) $2 x\left(3 x^{5}-3 x^{2}+x\right)+x^{2}\left(15 x^{4}-6 x+1\right)$
(d) $2 x\left(x^{2}+1\right)+2 x\left(x^{2}-1\right)$
2. (a) $\frac{(x+3)-x}{(x+3)^{2}}$
(b) $\frac{(2 x+7)\left(x^{2}+3\right)-2 x\left(x^{2}+7 x-2\right)}{\left(x^{2}+3\right)^{2}}$
(c) $\frac{6 x(x-17)-3 x^{2}}{(x-17)^{2}}$
(d) $\frac{-1}{(x+3)^{2}}$
3. $y=4.3 y+4 x=27$
4. (a) $(0,0) \max ,(2,4) \min$
(b) $(0.414,0.828) \min ,(-2.414,-4.828) \max$
(c) $(0,1) \max$
(d) $\left(-2, \frac{1}{5}\right) \max$
14.2.2
5. (a) $1 \frac{1}{2}(3 x+7)^{-1 / 2}$
(b) $-10 x\left(2-x^{2}\right)^{4}$
(c) $2 x\left(1+2 x^{2}\right)^{-1 / 2}$
(d) $-\frac{1}{2}(1+x)^{-3 / 2}$
(e) $\frac{1}{2}(2 x+1)\left(1+x+x^{2}\right)^{-1 / 2}$
(f) $200 x\left(1+x^{2}\right)^{99}$
6.

(a) $(1+2 x)^{1 / 2}+x(1+2 x)^{-1 / 2}$
(b) $(x-17)^{21}+21(x+3)(x-17)^{20}$
(c) $\frac{\sqrt{\left(x^{2}+1\right)}-x(x+4)\left(x^{2}+1\right)^{-1 / 2}}{x^{2}+1}$
(d) $\frac{x^{-1 / 2}(\sqrt{x+1})-1}{2(\sqrt{x+1})^{2}}$
3. $y=\frac{1}{2} x+1 \frac{1}{2} \cdot y+2 x=4$
14.3.2

1. (a) $3 \cos x 3 x$
(b) $-4 \sin 4 x$
(c) $2 e^{2 x-1}$
(d) $5 \sec ^{2}(5 x-3)$
(e) $-15 \cos 3 x-8 \cos 4 x$
(f) $-\sin x e^{\cos x}$
(g) $\frac{2}{2 x-3}$
(h) $-\tan x$
(i) $\cos x-x \sin x$
(j) $2 x \sin x+x^{2} \cos x$
(k) $e^{x}\left(\tan x+\sec ^{2} x\right)$
(1) $\ln x+1$ (m) $e^{x} \ln x+\frac{e^{x}}{x}$
(n) $-e^{-x} \sin 2 x+2 e^{-x} \cos 2 x$
(o) $-3 \sin 3 x \sin 2 x+2 \cos 3 x \cos 2 x$
(p) $-2 x \sin \left(1+x^{2}\right)$
(q) $\sin \left(1+3 x^{2}\right)+6 x^{2} \cos \left(1+3 x^{2}\right)$
(r) $-2 \cos x \sin x$
(s) $9 \cos 3 x \sin ^{2} 3 x \quad$ (t) $\frac{\cos x+\sin x}{\cos ^{2} x}$
(u) $\frac{2 x(\cos x+\sin x)-x^{2}(\cos x-\sin x)}{(\cos x+\sin x)^{2}}$
(v) $\frac{-2 \cos x \sin x \ln x-\frac{\cos ^{2} x}{x}}{(\ln x)^{2}}$
(w) $-x\left(x^{2}+3\right)^{-1 / 2} \sin \sqrt{\left(x^{2}+x\right)}$
(x) $-2 e^{x} \sin x$
(y) 0
(z) 1
2. $-\operatorname{cosec} x, \sec x \tan x .,-\cot x \operatorname{cosec} x$
3. $(\ln 10) 10^{x}$
4. $\frac{1}{x \ln 10}$
5. $(\ln a) a^{x}, \frac{1}{x \ln a}$
6. (a) $(0,0) \min .(-2,4) e^{2 x} \max$.
(b) $-\frac{1}{2}, \ln \frac{3}{4} \min$.
14.4.2
7. (a) $-\frac{1}{2}$
(b) $\frac{1}{2}$
(c) $-\frac{1}{4}$
(d) ∞
(e) 3
(f) $-1 \frac{1}{3}$
(g) $-\frac{1}{2}$
(h) -10
8. (a) $-\frac{x}{y}$
(b) $\frac{3-2 x}{3 y^{2}+1}$
(c) $\frac{2 x+4 y}{2 y-4 x}$
9. $y=1 \frac{1}{4} x-\frac{1}{4}$
10. $\pm \frac{2}{\sqrt{3}}$
11. $\pm \frac{2}{\sqrt{3}}$
12. (a) $3 t$
(b) $-2 t 1+t)^{2}$
(c) $\frac{2 t-3 t^{2}}{1-4 t}$
(d) $\frac{-2 t 1+t)^{2}}{\left(1+t^{2}\right)^{2}}$
(e) $\frac{1}{t}$
(f) $-\frac{1}{t^{2}}-\cot$
(g) $-\cot t$
(h) $-\frac{2}{3} \cot t$
(i) $\frac{e^{t}-e^{-t}}{e^{t}-e^{-t}}$
(j) $1 \frac{1}{2} \sin t$
13. $3 x+4 y=12 \sqrt{2}$
14. $3 y+x=26$
15. $0.4 \mathrm{~cm}^{2}$
16. $0.27 \mathrm{~cm}^{3}$

References:

Solomon, R.C. (1997), A Level: Mathematics ($4^{\text {th }}$ Edition) , Great Britain, Hillman Printers(Frome) Ltd.

More: (in Thai)
http://home.kku.ac.th/wattou/service/m456/09.pdf

