

14 Further Differentiation

14.1 The product and quotient rules

These rules enable products and quotients of functions to be differentiated.

The Product Rule. If y = uv, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ The Quotient Rule. If $y = \frac{u}{v}$, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

14.1.1 Examples

1. Differentiate $y = (x^2 + 3x - 2)(4 - x^2)$

Solution

Here $u = x^2 + 3x - 2$ and $v = 4 - x^2$. Apply the Product Rule: $\frac{dy}{dx} = (x^2 + 3x - 2)(-2x) + (4 - x^2)(2x + 3)$ $\frac{dy}{dx} = -4x^3 - 9x^2 + 12x + 12$

2. Differentiate $y = \frac{x}{2x^2 - 3x + 5}$

Solution

Here u = x and $v = 2x^2 - 3x + 5$. Apply the Quotient Rule:

$$\frac{dy}{dx} = \frac{(2x^2 - 3x + 5) \times 1 - x \times (4x - 3)}{(2x^2 - 3x + 5)^2}$$
$$\frac{dy}{dx} = \frac{-2x^2 + 5}{(2x^2 - 3x + 5)^2}$$

14.1.2 Exercises

1. Without multiplying out the brackets, differentiate the following: (a) $y = x(x^2 + 7x - 3)$

- (b) $y = (x+3)(2x^3+6x)$ (c) $y = x^2(3x^5-3x^2+x)$ (d) $y = (x^2-1)(x^2+1)$
- 2. Differentiate the following:

(a)
$$y = \frac{x}{x+3}$$

(b) $y = \frac{x^2 + 7x - 2}{x^2 + 3}$
(c) $y = \frac{3x^2}{x-17}$
(d) $y = \frac{1}{x+3}$

3. Find the equation of the tangent to the curve $y = \frac{x^2}{x-1}$

at the point (2,4). Find the equation of the normal at (3,4.5).

4. Find the maxima and minima of the following functions

(a)
$$y = \frac{x^2}{x-1}$$

(b) $y = \frac{x^2+1}{x+1}$
(c) $y = \frac{1}{x^2+1}$
(d) $y = \frac{1}{x^2+4x+9}$

14.2 The chain rule

The Chain Rule enables functions of functions to be differentiated. If y is a function of z, and z is a function of x, then the derivative of y is found by the following :

$$\frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dx}$$

14.2.1 Examples

1. Differentiate $y = (x^2 + 1)^{1/2}$. Solution

> Substitute for the inside function. Let $z = x^2 + 1$. Then $y = z^{\frac{1}{2}}$. Use the chain rule above.

$$\frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dx}$$

$$= \frac{1}{2}z^{-\frac{1}{2}} \times 2x$$
$$\frac{dy}{dx} = x(x^{2}+1)^{-\frac{1}{2}}$$

2. Differentiate $x(x^2+1)^{1/2}$

Solution

This is a product .u = x and $v = (x^2 + 1)^{1/2}$. Use the product rule of 14.1, with the derivative of v which was found in Example 1. which was found in Example 1.

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$
$$= x \times x (x^{2} + 1)^{-1/2} + (x^{2} + 1)^{1/2} \times 1$$
$$\frac{dy}{dx} = x^{2} (x^{2} + 1)^{-1/2} + (x^{2} + 1)^{1/2}$$

14.2.2 Exercises

1. Differentiate the following:

(a)
$$y = (3x+7)^{1/2}$$

(b) $y = (2-x^2)^5$
(c) $y = \sqrt{(1+2x^2)}$
(d) $y = \frac{1}{\sqrt{(1+x)}}$
(e) $y = \sqrt{(1+x+x^2)}$
(f) $y = (1+x^2)^{100}$

2. Differentiate the following :

(a)
$$y = x(1+2x)^{1/2}$$

(b) $y = (x+3)(x-17)^{21}$
(c) $y = \frac{x+4}{\sqrt{x^2+1}}$
(d) $y = \frac{\sqrt{x}}{\sqrt{x}}$

(d)
$$y = \frac{\sqrt{x+1}}{\sqrt{x+1}}$$

3. Let $y = \sqrt{x^2 + 3}$. Find the equations of the tangent and normal to the curve at the point (1, 2).

14.3 Differentiation of trig and log functions

Provide that the angles are measured in radians, the trigonometric functions as differentiated as followings:

If
$$y = \sin x$$
, $\frac{dy}{dx} = \cos x$
If $y = \cos x$, $\frac{dy}{dx} = -\sin x$
If $y = \tan x$, $\frac{dy}{dx} = \sec^2 x$

e is a number approximately equal to 2.718281828. The exponential function is defined as e^x .

 $\ln x$ is defined as $\log_e x$.

 e^x and $\ln x$ can be differentiated as follows:

If
$$y = e^x$$
, $\frac{dy}{dx} = e^x$
If $y = \ln x$, $\frac{dy}{dx} = \frac{1}{x}$.

14.3.1 Examples

1. Differentiate $y = e^x \cos x$

Solution

This is a product, so the product rule must be used.

$$\frac{dy}{dx} = e^x \cos x + e^x \left(-\sin x\right)$$
$$\frac{dy}{dx} = e^x \left(\cos x - \sin x\right)$$

2. Differentiate $y = \ln(1+x^2)$

Solution

This is a function of a function, so the chain rule is used.

$$\frac{dy}{dx} = \frac{1}{1+x^2} \times 2x$$
$$\frac{dy}{dx} = \frac{2x}{1+x^2}$$

14.3.2 Exercises

- 1. Differentiate the following:
 - (a) $\sin 3x$
 - (b) $\cos 4x$
 - (c) e^{2x-1}
 - (d) $\tan(5x-3)$

- (e) $5\cos 3x 2\sin 4x$
- (f) $e^{\cos x}$
- (g) $\ln(2x-3)$
- (h) $\ln(\cos x)$
- (i) $x \cos x$
- (j) $x^2 \sin x$
- (k) $e^x \tan x$
- (1) $x \ln x$
- (m) $e^x \ln x$
- (n) $e^{-x}\sin 2x$
- (o) $(\cos 3x)(\sin 2x)$
- (p) $\cos(1+x^2)$
- (q) $x \sin(1+3x^2)$
- (r) $\cos^2 x$
- (s) $\sin^3 3x$

(t)
$$\frac{x}{\cos x}$$

(u) $\frac{x^2}{\cos x + \sin x}$

(v)
$$\frac{\cos^2 x}{\cos^2 x}$$

$$\ln x$$

- (w) $\cos\sqrt{\left(x^2+3\right)}$
- (x) $e^x(\cos x \sin x)$
- (y) $\ln 3x \ln x$
- (z) $e^{\ln x}$

2. By considering $\tan x = \frac{\sin x}{\cos x}$, use the quotient rule to prove that $d(\tan x) = \sec^2 x$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

- 3. Find the derivatives of $\cot x$, $\sec x$, $\cos ecx$.
- 4. Use the fact that $10^x = e^{x \ln 10}$
- 5. Use the fact that $\log_{10} x = \frac{\ln x}{\ln 10}$ to differentiate $\log_{10} x$.
- 6. Let *a* be positive constant. Differentiate a^x and $\log_a x$
- 7. Find the maxima and minima of the following:

(a)
$$x^2 e^x$$

(b) $\ln(1+x+x^2)$

14.4 Applications of the chain rule

An explicit function gives y directly in terms of x. An implicit function connects y and x together by an equation.

 $y = 3x^2 + 7x - 3$ and $y = \cos 3x - 7e^x$ are explicit.

 $x^2 + y^2 = 3$ and $\cos xy + 7y^2 = 8x$ are implicit.

If x and y are both expressed, not in terms of each other, but in terms of a third variable t, then t is a parameter.

A small change in x is often written as δx . (Pronounced delta x). Small changes are connected by the following approximation:

$$\delta y \approx \frac{dy}{dx} \times \delta x$$

14.4.1 Examples

1. Find the gradient of the curve $y^2 + 3xy + 2x^2 = 6$ at the point (1,1). Solution

Here y is an implicit function of x. The y^2 term and the 3xy term are differentiate as follows:

$$\frac{d(y^2)}{dx} = \frac{d(y^2)}{dy} \times \frac{dy}{dx} = 2y\frac{dy}{dx}$$
 (Using the Chain Rule)
$$\frac{d(3xy)}{dx} = y\frac{d3x}{dx} + 3x\frac{dy}{dx} = 3y + 3x\frac{dy}{dx}$$
 (Using the Product Rule)
Go through the equation differentiating each term

Go through the equation, differentiating each term. Substitute the values x = 1 and y = 1.

$$2\frac{dy}{dx} + 3 + 3\frac{dy}{dx} + 4 = 0$$
$$\frac{dy}{dx} = -\frac{7}{5}$$

2. Variables x and y are given by $x = t^2 + 1$, $y = t^3 + 2$. Find $\frac{dy}{dx}$ in terms of t.

Solution

Use the chain rule :

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{dy}{dx} \div \frac{dx}{dt} = 3t^2 \div 2t$$
$$\frac{dy}{dx} = \frac{3}{2}t$$

 The radius of a sphere is 12 cm. What is the approximate change in surface area if the radius increases by 0.01cm²? Solution The area is given by $A = 4\pi r^2$. Use the small change formula above, with $\delta r = 0.01$.

$$\delta A \approx \frac{dA}{dr} \times \delta r = 8\pi r \times 0.01 = 8\pi \times 12 \times 0.01$$

The change is approximately $3cm^2$

4. Air is pumped into a spherical balloon at 10cm³s⁻¹. How fast is the radius increasing when it is 8 cm?
 Solution

The rate of change of the volume is $\frac{dV}{dt} = 10$. The rate of change of the radius is $\frac{dr}{dt}$. The volume is given by $V = \frac{4\pi r^3}{3}$. Use the chain rule: $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt} = 4\pi r^2 \times \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{10}{4\pi 8^2}$ The radius is increasing at 0.012 cm per second

14.4.2 Exercises

- 1. Find the gradients of the following functions at the points shown.
 - (a) $x^2 + y^2 = 5$ at (1, 2)
 - (b) $x^2 y^3 = 1$ at (3,2)
 - (c) $y^2 3x + 2y + x^2 = 1$ at (2,1)
 - (d) $x \cos y = 1$ at (1, 0)
 - (e) $y^2 2xy = -3$ at (2,3)
 - (f) $yx^2 + x^3 + 2y = 2 \operatorname{at}(2, -1)$
 - (g) $ye^x + e^y + e^x = 2$ at (0,0)
 - (h) $y^2x^2 + 2x 3y = 0$ at (1, 2)
- 2. For each of the following function, express $\frac{dy}{dx}$ in terms of x and y.
 - (a) $x^2 + y^2 = 4$ (b) $x^2 + y^3 - 3x + y = 5$
 - (c) $x^2 + 4xy y^2 = 3$
 - (c) x + 4xy y = 5
 - (d) $x^2 + 3yx^3 + 4y = 7$
- 3. Show that the stationary points of the ellipse $2x^2 + xy + y^2 = 1$ occur when y + 4x = 0.

- 4. Find the equation of the tangent to $5x^2 4y^2 = 1$ at the point (1,1).
- 5. Find the maximum and minimum values of x for the curve $x^2 xy + y^2 = 1$.
- 6. Find the maximum and minimum values of x for the curve in Question 5. (Hint : when x is a maximum and minimum, $\frac{dx}{dy} = 0$)
- 7. Find $\frac{dy}{dx}$ in terms of the parameter t for the following functions:
 - (a) $x = t^2, y = 2t^3 + 1$

(b)
$$x = \frac{1}{1+t}, y = t^2$$

- (c) $x = t + 2t^2, y = t^2 t^3$
- (d) $x = \frac{1}{1+t}, y = \frac{1}{1+t^2}$
- (e) $x = at^2$, y = 2at (*a* is constant)
- (f) $x = ct, y = \frac{c}{t} (c \text{ is constant})$
- (g) $x = \cos t, y = \sin t$
- (h) $x = 3\cos t, y = 2\sin t$
- (i) $x = e^t + e^{-t}, y = e^t e^{-t}$

(j)
$$x = 2 \tan t, y = \frac{3}{\cos t}$$

- 8. If x and y are given parametrically by $x = 3\cos t$ and, find the equation of the tangent at the point where find the equation of the tangent at the point where $t = \frac{1}{4}\pi$.
- 9. Find the equation of the normal to the curve given by $x = t^2 + 1$, $y = t^3 1$, at the point where t = 2.
- 10. Find the approximate increase in the area of a square when its side changes by 0.02 cm, when the side is 10 cm.
- 11. A cube has side 3 cm. Find the approximate change in radius if the volume changes by 0.02 cm, when the side is 10 cm.
- 12. The radius of a sphere is 5 cm. Find the approximate change in radius if the volume changes by $0.1cm^3$.
- 13. The radius if a sphere is measured as 12.3 cm, with a possible error of 0.05 cm. What is the possible error in the volume?
- 14. The surface area of a sphere is measured as $67 \ cm^2$, with a possible error of approximate error in the volume?
- 15. The side of a square is measured, with a possible error of 1%. What was the approximate percentage error in the area?

- 16. The percentage error when measuring the are of a circle was 4%. What was the approximate percentage error in its radius?
- 17. The side of a sphere is increasing at 0.5 cms^{-1} . At what rate is the area increasing at a time when the side is 15 cm?
- 18. The radius of a sphere is increasing at $0.02 \ cms^{-1}$. At what rate is the surface area increasing when the radius is $20 \ cm^2 s^{-1}$. At what rate is the volume increasing ?
- 19. The area of a circle is increasing at 20 cm^2s^{-1} . At what rate is the radius increasing, when it is 45 cm?
- 20. Water is poured into a cone, of semi-vertical angle 45° , at $10 \text{ cm}^3 \text{s}^{-1}$. When the height of the water is 15 cm, at what rate is it increasing ?
- 21. The volume of a cube is decreasing at $3 \text{ cm}^3 \text{s}^{-1}$. When the side is 4 cm, what is the rate of decrease of (a) the side (b) the surface area?
- 22. At the equinox on the equator the angle θ of elevation of the sun changes at 0.000073 radians/sec. A flagpole of height 40 m. throws a shadow of length 40/tan θ . Find the rate of decrease of the shadow when $\theta = 0.1$.

14.5 Examination questions

1. (a) Differentiate with respect to x, (i) $\ln(3x+1)$

(ii) $x \cos 2x$

(b) Find the equation of the tangent to the curve

$$y = \frac{3+x}{1-2x}$$

at the point where the curve crosses the line y = -1.

(c) Given that
$$x^2y + y^2 = 10$$
, find $\frac{dy}{dx}$ in terms of x and y.

2. (a) sketch the curve $y = \log_e(x+3)$.

(b) Find the gradient of this curve at point where x = e - 3. Hence show that the equation of the tangent to the curve at this point is ey = x + 3.

- 3. The surface area of an expanding spherical balloon is increasing at the rate of 16 cm^2/s . At the instant when the surface area is 144 cm^2 , calculate
 - (a) The rate , in cm/s to 2 significant figures, at which the radius of the balloon is increasing,
 - (b) The rate , in cm^3/s to significant figures, at which the volume of balloon is increasing.

Find , in cm^3 to 2 significant figures , the approximate increase in the volume of the balloon when the surface area increase from 144 cm^3 to 146 cm^2 .

4. Express $\frac{3x+16}{(x-3)(3x+2)}$ in partial fractions.

Hence find the value of $\frac{d}{dx}\left[\frac{13x+6}{(x-3)(3x+2)}\right]$ when x = 2.

5. (a) A curve has the equation $x^2 - xy + y^3 = k$, where k is a constant.

Find $\frac{dy}{dx}$ in terms of x and y.

Prove that the curve cannot posses a tangent which is parallel to the y-axis if

$$k < -\left(\frac{\pi}{2} - \theta\right) \frac{1}{27}.$$
(b) If $y = \frac{e^x}{1 + x^2}$, prove that the $\frac{dy}{dx}$ may be written in the form $\frac{(x-1)^2 e^x}{(1+x^2)^2}$

Hence, or otherwise, prove that, for all positive values of x,

$$\frac{e^x}{1+x^2} > 1$$

6. (a) the parametric equations of a curve are : $x = a\left(1+\frac{1}{t}\right), y = a\left(t-\frac{1}{t^2}\right)$, where a

```
is a constant and t \neq 0.
```

Find the equation of the normal to the curve at the point where t = 2.

(b)the equation of a curve is $(y-x)^2 = 2a(y+x)$, where *a* is a constant.

Find an expression for
$$\frac{dy}{dx}$$
 in terms of x, y and a.

(c)the velocity v of a point moving in a straight line is given in terms of the time t by $v = e^{-2t} \sin 3t$.

Find the smallest positive value of t for which the acceleration of the point is zero, giving two significant figure in your answer.

7. Apply the small increment formula $f(x+\delta x) - f(x) \approx \delta x f'(x)$ to $\tan x$ to find are approximate value of

$$\tan\left(\frac{100\pi+4}{400}\right) - \tan\frac{\pi}{4}$$

8. Sketch the curve whose equation is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a, b > 0)$

Find the gradient of the curve at the point $P(a\cos\theta, b\sin\theta)$.

Hence show that the equation of the tangent at *P* is $bx \cos \theta + ay \sin \theta = ab$ and that the equation of the normal at *P* is

$$ax\sin\theta - by\cos\theta = (a^2 + b^2)\sin\theta\cos\theta$$

The tangent at P meets the x-axis at T and the y-axis at U; the normal at P meets the x-axis at M and the y-axis at N. Show that NT is perpendicular to MU.

Write down the coordinates of the mid-point Q of UT and hence find the equation of the locus of Q as θ varies.

Common errors

1. Products and quotients

The derivative of a product is not the product of the derivatives. Similarly the derivative of a quotient is not the quotients of the derivatives. In both case the rules must be used.

If
$$y = uv$$
, then $\frac{dy}{dx} \doteq \frac{du}{dx} \times \frac{dv}{dx}$
If $y = \frac{u}{v}$, then $= \frac{dy}{dx} \neq \frac{du}{dx} \div \frac{dv}{dx}$

2. Chain rule

When using the chain rule

$$\frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dx}$$

Make sure you put the value of z in the $\frac{dy}{dx}$ term. Watch out for the following :

For
$$y = \sin x^2$$
, $\frac{dy}{dx} \neq 2x \cos x$. It should be $2x \cos x^2$.

Once you have found the derivative, substitute back so that the answer is in terms of x. It would be incorrect to leave z in the answer.

3. Differentiating power functions

The function a^x is very different from x^a . Do not differentiate as though they were the same function. In particular:

If $y = e^x$, then $\frac{dy}{dx} \neq xe^{x-1}$. It should be e^x .

4. Implicit functions

Many difficulties are found when differentiating implicit functions.

For something like
$$y^2$$
, use $\frac{d(y^2)}{dx} = \frac{d(y^2)}{dx} \times \frac{dy}{dx}$.

For something like .

For something like 3xy, use the product rule. And if there is a constant at the right hand side, its derivative is 0. Note the following :

If
$$x^2 + y^2 = 3$$
, then $2x + 2y \times \frac{dy}{dx} \neq \frac{dy}{dx}$.

The right hand side of the last equation should be 0.

Solution (to exercise)

14.1.2

1. (a)
$$(x^{2}+7x-3)+x(2x+7)$$

(b) $(2x^{3}+6x)+(x+3)(6x^{2}+6)$
(c) $2x(3x^{5}-3x^{2}+x)+x^{2}(15x^{4}-6x+1)$
(d) $2x(x^{2}+1)+2x(x^{2}-1)$

2. (a)
$$\frac{(x+3)-x}{(x+3)^2}$$
 (b) $\frac{(2x+7)(x^2+3)-2x(x^2+7x-2)}{(x^2+3)^2}$
(c) $\frac{6x(x-17)-3x^2}{(x-17)^2}$ (d) $\frac{-1}{(x+3)^2}$
3. $y=4.3y+4x=27$
4. (a) (0,0) max, (2,4) min (b) (0.414,0.828) min, (-2.414, -4.828) max (c) (0,1) max (d) $\left(-2,\frac{1}{5}\right)$ max
14.2.2
1. (a) $1\frac{1}{2}(3x+7)^{-1/2}$ (b) $-10x(2-x^2)^4$
(c) $2x(1+2x^2)^{-1/2}$ (d) $-\frac{1}{2}(1+x)^{-3/2}$
(e) $\frac{1}{2}(2x+1)(1+x+x^2)^{-1/2}$ (f) $200x(1+x^2)^{99}$
2. (a) $(1+2x)^{1/2} + x(1+2x)^{-1/2}$ (b) $(x-17)^{21} + 21(x+3)(x-17)^{20}$
(c) $\sqrt{(x^2+1)-x(x+4)(x^2+1)^{-1/2}}$ (d) $\frac{x^{-1/2}(\sqrt{x+1})-1}{2(\sqrt{x+1})^2}$
3. $y=\frac{1}{2}x+1\frac{1}{2}.y+2x=4$
14.3.2
1. (a) $3\cos x^3x$ (b) $-4\sin 4x$ (c) $2e^{2x+1}$ (d) $5\sec^2(5x-3)$
(e) $-15\cos 3x-8\cos 4x$ (f) $-\sin xe^{\cos x}$ (g) $\frac{2}{2x-3}$
(h) $-\tan x$ (i) $\cos x - x\sin x$ (j) $2x\sin x + x^2\cos x$ (k) $e^x(\tan x + \sec^2 x)$
(j) $\ln x+1$ (m) $e^x \ln x + \frac{e^x}{x}$ (n) $-e^{-x}\sin 2x+2e^{-x}\cos 2x$
(o) $-3\sin 3x\sin 2x+2\cos 3x\cos 2x$ (p) $-2x\sin(1+x^2)$
(q) $\sin(1+3x^2)+6x^2\cos(1+3x^2)$ (r) $-2\cos x\sin x$
(s) $9\cos 3x\sin^2 3x$ (t) $\frac{\cos x+\sin x}{\cos^2 x}$

(u)
$$\frac{2x(\cos x + \sin x) - x^{2}(\cos x - \sin x)}{(\cos x + \sin x)^{2}}$$
 (v)
$$\frac{-2\cos x \sin x \ln x - \frac{\cos^{2} x}{x}}{(\ln x)^{2}}$$

(w)
$$-x(x^{2} + 3)^{-1/2} \sin \sqrt{(x^{2} + x)}$$
 (x)
$$-2e^{x} \sin x$$

(y)
$$0$$
 (z)
$$1$$

3. $-\cos ecx$, sec $x \tan x$., $-\cot x \cos ecx$ 4. $(\ln 10)10^{x}$ 5. $\frac{1}{x \ln 10}$ 6. $(\ln a)a^{x}, \frac{1}{x \ln a}$ 7. $(a)(0,0) \min .(-2,4)e^{2x} \max.$ $(b)-\frac{1}{2}, \ln \frac{3}{4} \min.$

1. (a)
$$-\frac{1}{2}$$
 (b) $\frac{1}{2}$ (c) $-\frac{1}{4}$ (d) ∞
(e) 3 (f) $-1\frac{1}{3}$ (g) $-\frac{1}{2}$ (h) -10
2. (a) $-\frac{x}{y}$ (b) $\frac{3-2x}{3y^2+1}$ (c) $\frac{2x+4y}{2y-4x}$
4. $y = 1\frac{1}{4}x - \frac{1}{4}$
5. $\pm \frac{2}{\sqrt{3}}$
6. $\pm \frac{2}{\sqrt{3}}$
7. (a) 3t (b) $-2t1+t$)² (c) $\frac{2t-3t^2}{1-4t}$ (d) $\frac{-2t1+t)^2}{(1+t^2)^2}$
(e) $\frac{1}{t}$ (f) $-\frac{1}{t^2}$ -cot (g) $-cott$ (h) $-\frac{2}{3}cott$
(i) $\frac{e^t - e^{-t}}{e^t - e^{-t}}$ (j) $1\frac{1}{2}sint$
8. $3x + 4y = 12\sqrt{2}$
9. $3y + x = 26$
10. $0.4cm^2$
11. $0.27cm^3$

References:

==

Solomon, R.C. (1997), *A Level: Mathematics* (4th Edition), Great Britain, Hillman Printers(Frome) Ltd.

More: (in Thai) http://home.kku.ac.th/wattou/service/m456/09.pdf