Guidance document 7

Graphs and the absolute value of complex number
Learning outcomes. Deliberate write graph and find the absolute value of complex number in the form $\mathrm{a}+\mathrm{bi}$, or (a, b) and the properties of the complex to use in solving the problem.
Intended destination Write graphs and find the absolute value of the complex by definition.

Name \qquad Grade. \qquad No \qquad
\%
Find the absolute value of the complex by definition.

No	Problem	$\mathrm{Z}=\mathrm{a}+\mathrm{bi}$	$\|z\|=\sqrt{a^{2}+b^{2}}$
1	$z=3(2-6 i)-4(2+8 i)=(6-18 i)-(8+32 i)=-2-50 i$	$Z=-2-50 i$	$=\sqrt{2504}=2 \sqrt{626}$
2	$Z=2 i(2-3 i)-3 i(-3+4 i)=(4 i+6)+(9 i+12)=18+13 i$	$Z=18+13 i$	$=\sqrt{493}$
3	$z=(4-3 i)(2+i)=11-2 i$	$Z=11-2 i$	$=\sqrt{125}=5 \sqrt{5}$
4	$Z=i(3-2 i)^{2}=i(5-12 i)=12+5 i$	$\mathrm{Z}=12+5 \mathrm{i}$	$=\sqrt{169}=13$
5	$z=(3+2 i)^{3}$	Z=	
6	$Z=\frac{3+5 i}{-4 i}$	Z=	
7	$\mathrm{Z}=\frac{-14+23 i}{3+4 i}$	Z=	
8	$Z=\frac{8 i^{125}}{(2+\sqrt{5} i)^{2}}$	$\mathrm{Z}=$	
9	$z^{3}=-4 i^{140}+3 i^{51}$	$z^{3}=$	
10	$z^{2}=\frac{2+i}{2-i}+\frac{3+4 i}{1+2 i}$	$z^{2}=$	

Summary score
Score 10 points made \qquad points
Instructor. Mrs. Malaiporn uasuwan

