

Graphs and the absolute value of complex number

<u>Learning outcomes</u>.Deliberate write graph and find the absolute value of complex number in the form a + bi, or (a, b) and the properties of the complex to use in solving the problem.

<u>Intended destination</u> Write graphs and find the absolute value of the complex by definition.

NameNo......

No	Problem	Z=a+bi	$ z = \sqrt{a^2 + b^2}$
1	z= 3(2-6i)-4(2+8i) =(6-18i)-(8+32i) =-2-50i	Z=-2-50i	$=\sqrt{2504}=2\sqrt{626}$
2	Z =2i(2-3i)-3i(-3+4i) =(4i+6)+(9i+12)=18+13i	Z=18+13i	$=\sqrt{493}$
3	z =(4-3i)(2+i) = 11-2i	Z= 11-2i	$=\sqrt{125}=5\sqrt{5}$
4	$Z = i (3-2i)^2 = i(5-12i) = 12+5i$	Z=12+5i	$=\sqrt{169}$ =13
5	$z = (3+2i)^3$	Z=	
6	$Z = \frac{3+5i}{2}$	Z=	
	-4i		
7	$Z = \frac{-14 + 23i}{3 + 4i}$	Z=	
8	$Z = \frac{8i^{125}}{(1-2)^{125}}$	Z=	
	$\left(2+\sqrt{5}i\right)^2$		
9	$Z^{3} = -4i^{140} + 3i^{51}$	$Z^3 =$	
10	$Z^2 = \frac{2+i}{2-i} + \frac{3+4i}{1-2i}$	$Z^2 =$	
	2-i 1+2i		

Summary score

Score 10 points made points

Instructor. Mrs. Malaiporn uasuwan