

The square root of a complex number (a + bi)

<u>Learning outcomes</u> Write a complex number in polar form, and solving complex problems in a polar form

Intended destination	Find the square	root of a com	plex number ((a + bi)
----------------------	-----------------	---------------	---------------	----------

The square root of $z=a\pm bi$ that is $\pm \left(\sqrt{\frac{r+a}{2}}\pm\sqrt{\frac{r-a}{2}}\right)$ Find the square root of a complex number a+bi.

Sample $z = -2 - 2\sqrt{3}i$ a = -2, $r = \sqrt{(-2)^2 + (-2\sqrt{3})^2}$ $r = \sqrt{4 + 12} = \sqrt{16} = 4$ $\pm \sqrt{z} = \pm \sqrt{(-2 - 2\sqrt{3}i)}$ $= \pm \left(\sqrt{\frac{4 + (-2)}{2}} - \sqrt{\frac{4 - (-2)}{2}i}\right)$ $\pm \left(1 - \sqrt{2}\right)$

No	z = a ± bi	а	r= z	Answer	
1	z = -5+12i	-5	$\sqrt{(-5)^2 + 12^2} = 13$	<u>+</u> (2+3i)	
2	z = -15-8i				
3	z = -3-4i				
4	z = 5-12i				
5	z = 12-5i				
6	$z = 1 + 2\sqrt{2}i$				
7	z = 6+8i				
8	$z = -4-4\sqrt{3}i$				
9	$z = 3+3\sqrt{3}i$				
10	$z = \sqrt{2-\sqrt{2}i}$				

Summary score

Score 10 points made points

already.