

The n root of a complex number in polar form.

<u>Learning outcomes</u> Find the n root of a complex number when $n \in I^+$, and Solve polynomial equations of one variable with integer coefficients of degree less than or equal to three.

Intended destination	Find the n root of a	complex number	polar complex.	
Name		Class	No	
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	6%
Find the in root of co	omplex numbers in po	lar form.		رکے

No	Problem	$x_k = \sqrt[n]{r} \left[\cos \left(\frac{\theta + 360^\circ k}{n} \right) + i \sin \left(\frac{\theta + 360^\circ k}{n} \right) \right]$	Answer
1	TheCube root of i	$x_k =$	
		x ₀ =	
		x ₁ =	
		$x_2=$	
2	The fourth root of -	$x_k =$	
	т	x ₀ =	
		X ₁ =	
		x ₂ =	
		x ₃ =	
3	The square root of	$x_k =$	
	$-2+2\sqrt{3}$ i	x ₀ =	
		$x_1 =$	
4	The fourth root of	$x_k =$	
	$16(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3})$	x ₀ =	
		X ₁ =	
		x ₂ =	
		x ₃ =	

Summary score

Score 17 points made points

Instructor. Mrs. Malaiporn uasuwan