

Remainder and the quotient of polynomials is n, when $n \in I^{\dagger}$ and $n \ge 1$

<u>Learning outcomes</u> Find the n root of a complex number when $n \in I^{\dagger}$, and Solve polynomial equations of one variable with integer coefficients of degree less than or equal to three.

Intended destination Find a remainder and quotient of the polynomial is n ,when $n \in I^+$ and $n \ge 1$ this is the only polynomial coefficients are positive integers.

NameNo......

Example Solution

<u>le</u>	$(2x^{3} - 3x)^{3}$	²+ 4x - 9) ÷(x-2)
<u>on</u>	f(x)	$= 2x^{3} - 3x^{2} + 4x - 9$
	x-c = x-2	c = 2
		1 0

2	2	-3	4	-9	
		4	2	12	-
	2	1	6	3	-

Quotient $2x^2+x+6$ Remainder 3

No	Problem	Quotient	Remainder					
1	$(x^{3}+3x^{2}+1)$; (x-1)	$x^{2}+4x+4$	5					
2	$(x^{4}+1) \div (x+1)$							
3	$(2x^6+3x^2+7) \div (2x-1)$							
4	$(2x^4 - 3x^2 + 5x + 1) \div (2x + 3)$							
5	$(x^{3}+3ix^{2}+3x-1) \div (x-i)$			•				
Find the quotient and the remainder by using the theory of algorithms divide or dividing the true synthesis.								

Score 8 points made points

Instructor. Mrs. Malaiporn uasuwan