

Remainder and the quotient of polynomials is n, when $n \in I^{+}$and $n \geq 1$

Learning outcomes Find the n root of a complex number when $\mathrm{n} \in \mathrm{I}^{+}$, and Solve polynomial equations of one variable with integer coefficients of degree less than or equal to three.
Intended destination Find a remainder and quotient of the polynomial is n , when $n \in I^{+}$and $n \geq 1$ this is the only polynomial coefficients are positive integers.
Name \qquad Class. \qquad No. \qquad \% Find the quotient and the remainder from dividing the polynomial.
Example $\quad\left(2 x^{3}-3 x^{2}+4 x-9\right) \div(x-2)$
Solution

$$
f(x)=2 x^{3}-3 x^{2}+4 x-9
$$

2

$$
\begin{aligned}
& x-c=x-2 \\
& \begin{array}{|cccc}
2 & -3 & \therefore & c=2 \\
& 4 & 2 & 12 \\
\hline 2 & 1 & 6 & 3
\end{array}+
\end{aligned}
$$

Quotient

3

Instructor. Mrs. Malaiporn uasuwan

